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Abstract
We describe the effects of geometric torsion on the coherent motion of electrons along a thin
twisted quantum ring. The geometric torsion inherent in the quantum ring triggers a quantum
phase shift in the electrons’ eigenstates, thereby resulting in a torsion-induced persistent current
that flows along the twisted quantum ring. The physical conditions required for detecting the
current flow are discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Spatial confinement of a particle’s motion to low-dimensional
space has an enormous influence on the quantum-mechanical
properties of the particle. Of particular interest are systems in
which a particle’s motion is constrained to a thin curved layer
by a strong confining force. Due to the confinement, excitation
energies of the particle in a direction normal to the layer
are significantly higher than those in a direction tangential
to it; as a result, one can define an effective Hamiltonian
that involves an anisotropic effective mass and a curvature-
induced scalar potential [1–3]. This implies that the behavior
of quantum particles that are confined to a thin curved layer is
different from that of quantum particles on a flat plane, even
in the absence of an external field (except for the confining
force). The effect of curvature was first suggested by Jensen
and Koppe [1], and this was followed by subsequent studies
that were conducted out of mathematical curiosity [4]. In
recent years, the effect of curvature has been reconsidered
from the viewpoint of condensed matter physics [5–15], owing
to technological progress that has enabled the fabrication of
nanostructures with curved geometries [16–21].

In addition to surface curvature, geometric torsion is
another important parameter relevant to quantum mechanics in
low-dimensional nanostructures. A torsion effect is manifested
in quantum transport in a thin twisted nanowire with a finite
cross section. When a quantum particle moves along a long
thin twisted wire, it exhibits a quantum phase shift whose

magnitude is proportional to the integral of the torsion along
the wire [22, 23]. This torsion-induced phase shift is attributed
to an effective vector potential that appears in the effective
Hamiltonian defined for the movement of a particle in a twisted
nanowire.

The mathematical mechanism for the occurrence of the
effective vector potential was demonstrated by Takagi and
Tanzawa [22], and independently by Magarill and Éntin [24].
Their results imply various intriguing phenomena purely
originating from geometric torsion. For instance, the torsion-
induced phase shift may give rise to a novel class of persistent
current flow along a closed loop of a twisted wire; it is
novel in the sense that no magnetic field needs to penetrate
inside the loop, which is in contrast with the ordinary
persistent current [25–32] observed in a non-twist quantum
loop. However, optimal physical conditions as well as
geometric parameters in order to measure those phenomena
have been overlooked so far. Quantitative discussions as to
what degree of torsion is necessary to make the phenomena
be measurable in real experiments are important from both
fundamental and practical viewpoints.

In this paper, we have investigated the quantum state
of electrons in a closed loop of a twisted wire, i.e. a
twisted quantum ring. The wire consists of a twisted
atomic configuration, and its centroidal axis is embedded
in a flat plane; these assumptions mean that the torsion in
our system is defined with respect to a twisting crystalline
reference frame. We have revealed that the magnitude
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Figure 1. Sketch of a twisted quasi-one-dimensional wire with a
circular cross section. The mesh indicates the curvilinear coordinate
(q0, q1, q2) used in this study. Geometric torsion of the atomic
configuration along the cylindrical axis is represented by the rotation
of the reference frame in cross section (see text).

of the torsion-induced persistent current I comes within a
range of existing measurement techniques under appropriate
conditions; this indicates the significance of a torsion-induced
quantum phase shift in the study of actual nanostructures,
besides its theoretical interest. It should be emphasized that the
persistent current I we have considered is free from a magnetic
field penetrating through the ring, and thus differs inherently
from the counterpart observed in untwisted rings.

2. Quantum state in a twisted wire

In this section, we derive an explicit form of the effective vector
potential in line with the discussions presented in [22]. Let us
consider an electron propagating in a long thin curved cylinder
with a weakly twisted atomic configuration (figure 1). For
simplicity, the cylinder is assumed to have a circular cross
section with constant diameter d . We introduce orthogonal
curvilinear coordinates (q0, q1, q2) such that q0 parameterizes
the centroidal axis C of the curved cylinder (i.e. the curve q1 =
q2 = 0 coincides with C). We assume that C is embedded in a
flat plane so that C itself has no torsion; therefore, the torsion
of the present system is a consequence of the twisted atomic
structure around the axis C of the conducting cylinder.

A point on C is given by the position vector r ≡ r(q0).
Similarly, a point in the vicinity of C is represented by

R = r(q0)+ q1e1(q0)+ q2e2(q0), (1)

where the set (e0, e1, e2) with e0 ≡ ∂0R and |e1| = |e2| = 1
forms a right-handed orthogonal triad; we use the notation
∂a ≡ ∂/∂qa (a = 0, 1, 2) throughout the paper. Here, the
unit vectors e1 and e2 span the cross section normal to C , and
they rotate along C with the same rotation rate as that of the
atomic configuration. To be precise, the q0 dependences of e1

and e2 are chosen such that the torsion τ defined by

τ = e2 · ∂0e1 (2)

conforms to that of the twisted atomic structure. Using the
continuum approximation, we obtain the Schrödinger equation
for the twisted quantum cylinder as

− h̄2

2m∗
2∑

a,b=0

1√
g
∂a

(√
ggab∂b

)
φ + Vφ = Eφ. (3)

Here, m∗ is the effective mass of the electron and V = V (q)
with q ≡ (q2

1 + q2
2 )

1/2 is a strong confining potential that

confines the electron’s motion to the vicinity of C . gab are
elements of the matrix [gab], which is the inverse of [gab]
whose elements are gab = ∂aR · ∂bR and g = det[gab] [33].
From equation (1), we obtain the following explicit forms of
gab:

g00 = γ−4, g0a = γ−4τε0abqb,

gab = δab + γ−4τ 2
(|q|2δab − qaqb

)
, [a, b = 1, 2]

(4)

where γ = (1 − κaqa)
1/2 and κa = e0 · ∂0ea ; the summation

convention was used in equation (4). The quantity κ ≡ (κ2
1 +

κ2
2 )

1/2 represents the local curvature of C . Note that both τ and
κ are functions only of q0.

Hereafter, we assume that the geometric modulation of the
cylinder (i.e. torsion and curvature) is sufficiently smooth and
small so that the relations κd � 1 and τd � 1 are satisfied.
Under these conditions, equation (3) is reduced to [22]

μ

[
(
∂2

1 + ∂2
2

) +
(
∂0 − iτ L

h̄

)2

+ κ2

4

]
φ + Vφ = Eφ, (5)

where μ ≡ −h̄2/(2m∗) and L ≡ −ih̄(q1∂2 − q2∂1) is the
angular momentum operator in the cross section. The solution
for equation (5) is assumed to have the form

φ(q0, q1, q2) = ψ(q0)

N∑

j=1

c j u j(q1, q2). (6)

Here u j(q1, q2) is an N-fold degenerate eigenfunction of the
operator of H⊥ ≡ μ(∂2

1 + ∂2
2 ) + V (q) that is invariant to the

rotation of the coordinates q1, q2. This means that u j(q1, q2)

is an eigenfunction of L such that

Lu j(q1, q2) = h̄m j u j(q1, q2), (7)

where m j is an integer. Thus, we multiply both sides of
equation (5) with

∑
j c∗

j u
∗
j(q1, q2) and integrate with respect

to q1 and q2 in order to obtain an effective one-dimensional
equation:

μ

[(
∂0 − iτ 〈L〉

h̄

)2

+ κ2

4
− τ 2

h̄2

(〈L2〉 − 〈L〉2
)
]
ψ(q0)

= εψ(q0), (8)

where 〈L〉 = h̄
∑

j |c j |2m j and ε is the eigenenergy of an
electron moving in the axial direction. The product τ 〈L〉
in parentheses is identified as the effective vector potential
mentioned earlier.

3. Torsion-induced persistent current

We now consider a closed loop of a twisted quantum wire
with a circular cross section of constant radius R2, which we
call a twisted quantum ring. For simplicity, the centroidal
axis C of the ring is set to be a circle of radius R1 	 R2,
which results in a constant curvature κ � 1/R2 (i.e. q0-
independent). In addition, we assume that the torsion τ of
the atomic configuration around C is constant throughout the
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Figure 2. Twisted quantum ring encircling external current flow Iext.
A magnetic field B induced along the ring breaks the time reversal
symmetry of the system, thus resulting in a torsion-induced persistent
current I parallel to B.

ring and satisfies the condition τ R2 � 1 (generalization to the
case in which κ and/or τ are q0-dependent is straightforward).
Hence, an electron’s motion in the twisted ring is described by
equation (8), from which we obtain

ψ(q0) = ψunt(q0) exp

(
−i
τ

h̄

∫ q0

0
〈L〉 dq ′

0

)
, (9)

where ψunt ∝ exp(−ikq0) is the eigenfunction of an untwisted
ring (i.e. τ ≡ 0). An additional quantum phase proportional to
τ implies the presence of a torsion-induced persistent current
throughout the ring, as will be proved below.

Equation (9) shows that the condition 〈L〉 �= 0 is necessary
for the presence of a torsion-induced persistent current. The
condition can be realized by applying an external current Iext

that penetrates through the center of the ring, as shown in
figure 2. Using the polar coordinate system (r, θ ) with respect
to the circular cross section, L in equation (5) is rewritten as

L B = −ih̄
∂

∂θ
− eBr 2

2
, (10)

where B = μ0 Iext/�, � = 2πR1 and μ0 is the permeability
constant. The confining potential V (r) is set to be a parabolic
well centered at r = 0, V (r) = m∗ω2

pr 2/2, where ωp

characterizes the steepness of the potential. Hence, the lowest
energy eigenstate u0 in the cross section is given by [34, 35]

u0(r) =
√

m∗�
π h̄

exp

(
−m∗�

2h̄
r 2

)
, (11)

where � =
√
ω2

p + (ωc/2)2 and ωc = eB/m∗ is the cyclotron

frequency. As a consequence, the expectation value of L B with
respect to u0 is

〈L B 〉 =
∫ ∞

0
r dr

∫ 2π

0
dθ u∗

0 L Bu0 = − eh̄ B

2m∗�
, (12)

or equivalently

〈L B〉 = − eμ0h̄

2�m∗
[
ω2

p + ( eμ0

2�m∗ Iext
)2

]1/2 Iext. (13)

From equation (13), we see that 〈L B 〉 �= 0 if Iext �= 0.

The persistent current I driven by τ is evaluated by
considering the periodic boundary condition ψ(q0 + �) =
ψ(q0) that holds for the twisted ring. Since ψunt(q0) ∝
exp(−ikq0), it follows from equation (9) that

exp(−ik�) exp

(
− i

h̄
τ 〈L B 〉�

)
= 1, (14)

or equivalently

k = 2π

�
α − τ 〈L B〉

h̄
≡ kα, (α = 0,±1,±2, . . .). (15)

The current carried by a single electron in the αth eigenstate
is Iα = evα/� = eh̄kα/(m∗�) [36]. The total persistent
current I in a ring containing N electrons at zero temperature
is obtained by summing the contributions from all eigenstates
with energies less than EF. It is known that I for odd N ,
denoted by Iodd, differs from that for even N , denoted by
Ieven [36]3. In fact, straightforward calculation yields

Iodd = 2 ×
(N−1)/2∑

α=−(N−1)/2

Iα

= 2 ×
(N−1)/2∑

α=−(N−1)/2

eh̄

m∗�

(
2π

�
α − τ 〈L B〉

h̄

)

= − evF

�
p, for − 2 � p < 2 (16)

and

Ieven = 2 ×
N/2∑

α=−N/2+1

Iα = evF

�
(2 − p),

for 0 � p < 4 (17)

where vF ≡ π h̄ N/(m∗�) and p = 4τ 〈L B〉�/h. We note that
Iodd(p) = Iodd(p + 4) and Ieven(p) = Ieven(p + 4). The
periodicities of Iodd and Ieven stem from the fact that only the
states |kα| �

√
2m∗EF/h̄ contribute to the current; if |kα| for

a given α exceeds
√

2m∗EF/h̄ by imposing a sufficiently large
(or small) 〈L B 〉, the state kα becomes vacant and instead the
state kα − 2π/� is occupied (see [36] for details).

Since precise control of N is difficult experimentally,
we assume an ensemble average over many experimental
realizations of isolated twisted rings to obtain (Iodd + Ieven)/2,
namely

I = I (p) =
⎧
⎨

⎩

0 for p = 0,
evF

�
(1 − p) for 0 < p < 2,

(18)

where I (p) = I (p + 2).

4. Estimation of the induced current

In order to estimate the magnitude of I observed in
experiments, we consider a twisted silver quantum ring.
Successful syntheses of ultrathin crystalline silver nanowires

3 It is noteworthy that a complete description of the sign and magnitude of the
persistent current for non-twisted rings has been recently proposed in [37] by
considering the role of electron–electron interactions.

3



J. Phys.: Condens. Matter 22 (2010) 075301 H Taira and H Shima

Figure 3. Stepwise behavior of I for the twisted ring with
R1 = 1.0 μm, R2 = 1.0 nm and τ = 1/�. Except at Iext = 0, the
magnitude of I is almost invariant to the changes in Iext and τ .

of nanometer scale width and micrometer scale length have
been reported [38–40], followed by theoretical studies on their
structural and transport properties [41–44]. Such nanowires
with high aspect ratios (i.e. the ratio of length to width) may
be candidates for fabricating a twisted quantum ring. It should
be borne in mind, however, that the applicability of our theory
is not limited to a specific material but to general mesoscopic
rings with twisted geometries.

Figure 3 is a plot of I as a function of Iext as given in
equation (18). We have set R1 = 1 μm and R2 = 1 nm by
referring to an actual length and radius of the silver nanowires
presented in [38–40], and τ = 1/� (i.e. one twist for one
round) for simplicity. The Fermi velocity in silver is vF =
1.39 × 106 m s−1 [45], and the characteristic energy scale h̄ωp

which corresponds to the cross-sectional radius R2 = 1 nm
is estimated by h̄ωp = 0.1 eV from the relation h̄ωp ∼
m∗ω2

p R2
2/2 and m∗ = 9 × 10−31 kg for silver. In figure 3,

we observe a stepwise increase in I that jumps from I =
−35.4 nA (for Iext < 0) to I = +35.4 nA (for Iext > 0).
Except at Iext = 0, the magnitude of I is almost invariant to the
changes in Iext and τ . This constant behavior of I is attributed
to the fact that, under the present conditions, p is much less
than unity; as a result, I ∼ evF

�
for Iext > 0 and I ∼ − evF

�
for

Iext < 0, respectively, as seen from equation (18).
The most important observation is the amplitude of I

being 35.4 nA, which is comparable with the values obtained
by using conventional measurement techniques [25–31]. This
result indicates the physical significance of the torsion-induced
quantum phase shift in actual nanostructures with twisted
geometries. We emphasize that the mechanism by which a
persistent current is induced in our system differs inherently
from its counterpart in an untwisted ring, in the latter of which
a quantum phase shift occurs as the result of the application of
an external magnetic field that threads the center of the ring.

5. Concluding remarks

It deserves comment on other possible apparatus that exhibit
torsion-induced current flow. In the present work, an external
current Iext was assumed to thread the center of the ring in
order to obtain a non-zero expectation value of the angular

momentum of the cross-sectional wavefunction. Differing
from this manner, we may directly apply an external magnetic
field in a direction tangential to a twisted structure. For
instance, let us consider a twisted wire (not ring), both ends
of which are connected by a lead, and apply a magnetic field
of the order of one gauss in a direction tangential to the
wire. Such an apparatus functions in a way similar to that
considered in section 3 and therefore it causes torsion-induced
current flow in the loop composed of the wire and lead. To
date, many attempts have been done to synthesize [46, 47]
and simulate [48, 49] various kinds of twisted nanowires.
Their results may give a clue to build a set-up towards an
experimental test of our theoretical predictions.

In conclusion, we have demonstrated that a novel type of
persistent current is induced in a quantum coherent ring formed
by a long thin twisted quantum ring. This persistent current
is a result of the geometric torsion of the ring that causes a
quantum phase shift in the eigenstates of the electrons moving
in the ring. The magnitude of the persistent current is within
the realm of the results obtained from laboratory experiments;
this indicates the importance of torsion-induced phenomena
in influencing the physical properties of actual nanostructures
with twisted geometries.
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[18] Lorke A, Böhm S and Wegscheider W 2003 Superlatt.

Microstruct. 33 347
[19] Onoe J, Nakayama T, Aono M and Hara T 2003 Appl. Phys.

Lett. 82 595
[20] McIlroy D N, Alkhateeb A, Zhang D, Aston D E,

Marcy A C and Norton M G 2004 J. Phys.: Condens. Matter
16 R415

[21] Gupta S and Saxena A 2009 J. Raman Spectrosc. 40 1127
[22] Takagi S and Tanzawa T 1992 Prog. Theor. Phys. 87 561
[23] Mitchell K A 2001 Phys. Rev. A 63 042112
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[28] Fuhrer A, Lüscher S, Ihn T, Heinzel T, Ensslin K,
Wegscheider W and Bichler M 2001 Nature 413 822

[29] Kleemans N A J M, Bominaar-Silkens I M A, Fomin V M,
Gladilin V N, Granados D, Taboada A G, Garcia J M,
Offermans P, Zeitler U, Christianen P C M, Maan J C,
Devreese J T and Koenraad P M 2007 Phys. Rev. Lett.
99 146808

[30] Bluhm H, Koshnick N C, Bert J A, Huber M E and Moler K A
2009 Phys. Rev. Lett. 102 136802

[31] Bleszynski-Jayich A C, Shanks W E, Peaudecerf V,
Ginossar E, von Oppen F, Glazman L and Harris J G E 2009
Science 326 272

[32] Imry Y 2002 Introduction to Mesoscopic Physics (Oxford:
Oxford University Press)

[33] Shima H and Nakayama T 2010 Higher Mathematics for
Physics and Engineering (Berlin: Springer-Verlag)

[34] Fock V 1928 Z. Phys. 47 446
[35] Darwin C G 1930 Proc. Camb. Phil. Soc. 27 86
[36] Cheung H F, Gefen Y, Riedel E K and Shih W H 1988 Phys.

Rev. B 37 6050
[37] Bary-Soroker H, Entin-Wohlman O and Imry Y 2008 Phys.

Rev. Lett. 101 057001
[38] Hong B H, Bae S H, Lee C W, Jeong S and Kim K S 2001

Science 294 348
[39] Sun Y, Mayers B, Herricks T and Xia Y 2003 Nano Lett. 3 955
[40] Graff A, Wagner D, Ditlbacher H and Kreibig U 2005 Eur.

Phys. J. D 34 263
[41] Rodrigues V, Bettini J, Rocha A R, Rego L G C and

Ugarte D 2002 Phys. Rev. B 65 153402
[42] Zhao J, Buia C, Han J and Lu J P 2003 Nanotechnology 14 501
[43] Elizondo S L and Mintmire J W 2006 Phys. Rev. B 73 045431
[44] Jia J, Shi D, Zhao J and Wang B 2007 Phys. Rev. B 76 165420
[45] Mitchell J W and Goodrich R G 1985 Phys. Rev. B 32 4969
[46] Cohen-Karni T, Segev L, Srur-Lavi O, Cohen S R and

Joselevich E 2006 Nat. Nanotechnol. 1 36
[47] Nagapriya K S, Goldbart O, Kaplan-Ashiri I, Seifert G,

Tenne R and Joselevich E 2008 Phys. Rev. Lett. 101 195501
[48] Arias I and Arroyo M 2008 Phys. Rev. Lett. 100 085503
[49] Wang Z, Zu X, Gao F and Weber W J 2008 Phys. Rev. B

77 224113

5

http://dx.doi.org/10.1016/j.physe.2009.11.103
http://dx.doi.org/10.1103/PhysRevLett.84.4441
http://dx.doi.org/10.1038/35065525
http://dx.doi.org/10.1016/j.spmi.2004.02.009
http://dx.doi.org/10.1063/1.1542943
http://dx.doi.org/10.1088/0953-8984/16/12/R02
http://dx.doi.org/10.1002/jrs.2245
http://dx.doi.org/10.1143/PTP.87.561
http://dx.doi.org/10.1103/PhysRevA.63.042112
http://dx.doi.org/10.1134/1.1574549
http://dx.doi.org/10.1103/PhysRevLett.64.2074
http://dx.doi.org/10.1103/PhysRevLett.67.3578
http://dx.doi.org/10.1103/PhysRevLett.70.2020
http://dx.doi.org/10.1038/35101552
http://dx.doi.org/10.1103/PhysRevLett.99.146808
http://dx.doi.org/10.1103/PhysRevLett.102.136802
http://dx.doi.org/10.1126/science.1178139
http://dx.doi.org/10.1007/BF01390750
http://dx.doi.org/10.1017/S0305004100009373
http://dx.doi.org/10.1103/PhysRevB.37.6050
http://dx.doi.org/10.1103/PhysRevLett.101.057001
http://dx.doi.org/10.1126/science.1062126
http://dx.doi.org/10.1021/nl034312m
http://dx.doi.org/10.1140/epjd/e2005-00108-7
http://dx.doi.org/10.1103/PhysRevB.65.153402
http://dx.doi.org/10.1088/0957-4484/14/5/304
http://dx.doi.org/10.1103/PhysRevB.73.045431
http://dx.doi.org/10.1103/PhysRevB.76.165420
http://dx.doi.org/10.1103/PhysRevB.32.4969
http://dx.doi.org/10.1038/nnano.2006.57
http://dx.doi.org/10.1103/PhysRevLett.101.195501
http://dx.doi.org/10.1103/PhysRevLett.100.085503
http://dx.doi.org/10.1103/PhysRevB.77.224113

	1. Introduction
	2. Quantum state in a twisted wire
	3. Torsion-induced persistent current
	4. Estimation of the induced current
	5. Concluding remarks
	Acknowledgments
	References

